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Grooves - Solution

▶ Start with the initial permutation and perform the swaps for each groove in order
of non-decreasing Y -coordinates.

▶ O(N logN) for sorting by Y -coordinates, the rest is O(N).

▶ Alternatively: simulate it for each initial position. Each groove is considered at
most two times. It can be implemented in O(N logN).

▶ Fun fact: ‘Amidakuji’
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Constantine - Solution

Observation: The notation encodes binary representation!

Parsing Algorithm:

▶ Start from bottom row (value N)

▶ Track column positions upward

▶ Even number → move LEFT

▶ Odd number → move RIGHT

▶ Divide by 2, repeat until = 1

Example: 10 = 10102
#. <- 1 bit:1 23

.# <- 2 bit:0 22

#. <- 5 bit:1 21

.# <- 10 bit:0 20

Each step encodes one binary bit!

Visual Representation:

10

5

2

1

bit=0

bit=1

bit=0

bit=1

Blue = even (bit=0), Red = odd (bit=1)

Binary: Read top to bottom: 10102 = 10
Solution: Parse → Add → Encode
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▶ Input: N ×M grid where each cell is either snow or empty.

▶ Output: At given timesteps determine how many snowflakes can’t fall anymore.
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Snow

▶ Input: N ×M grid where each cell is either snow or empty.

▶ Output: At given timesteps determine how many snowflakes can’t fall anymore.
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▶ For each snowflake determine how long it can fall.

▶ Consider one snowflake, a snowflake underneath
shortens the fall by 1.

▶ For each column start from the bottom, for each empty
space increase the time by 1, for stars assign the current
time.

▶ Aggregate the stars by the time and use prefix sum.

▶ Answer the querries.
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Archery

▶ Input: Rooks on a large chessboard, we can ‘shoot’ from (x1, y1) to (x2, y2) if
x1 = x2 or y1 = y2. No matter where we place start and finish, we should be able
to reach from start to finish.

▶ Output: Minimum number of vertical/horizontal moves such that we can reach
between any two rooks.

▶ Transformation to a graph: (x1, y1), (x2, y2) are adjacent iff x1 = x2 or y1 = y2.

▶ If the graph is connected, output 0.
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Archery cont.

▶ If the graph is disconnected, we must perform some moves. Note that we can
”jump” over other pieces.

▶ By moving one rook, we cannot decrease the number of connected components by
more than 1.

▶ On the other hand, we can always decrease the number of components by 1 by a
clever move.

▶ ⇒ answer is number of connected components minus one.
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Archery cont. 2

▶ ⇒ answer is number of connected components minus one.

▶ Note that the graph can have N2 edges, no need to store all of them. Just store
edges for neighboring Y -coordinates for same X (and vice-versa for X -coords for
same Y )

▶ Such subgraph H has O(N) edges and connected components of H coincide with
connected components of G and it can be constructed in O(N logN).
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Hussites

The Setup:

▶ Given N wagons (points in a 2D plane) and a required percentage P.

▶ Constraints: N ≤ 1500. Coordinates are integers between −106 and 106.

The Goal:

▶ Determine if there exists a ”false escape route” (a straight line L) such that at
least P% of the wagons are ”powerful”.
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The Setup:

▶ Given N wagons (points in a 2D plane) and a required percentage P.

▶ Constraints: N ≤ 1500. Coordinates are integers between −106 and 106.

The Goal:

▶ Determine if there exists a ”false escape route” (a straight line L) such that at
least P% of the wagons are ”powerful”.

Solution

1. Testing each line defined by two points is too slow - O(N3).

2. Find canonical name of an bisector for each pair of points.

3. If there are N ∗ P/100 copies of it, output YES.

4. Total complexity O(N2).
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Ducks
We have N distinct grillsticks. Each grillstick holds exactly 4 animals. The order of
animals on the sticks, and the order of the sticks, matters.

1. All N grillsticks are used (Total animals = 4N).
2. Total number of Ducks = Total number of Hares.
3. At least one grillstick must contain only ducks (DDDD).

Goal: Find the total number of distinct feast configurations satisfying these rules,
modulo 109 + 7.
We use the PIE formula. For a fixed k , there are

(N
k

)
ways to choose which k sticks

are fixed to DDDD. We multiply this by the number of ways to configure the
remaining sticks.

Result
The total number of distinct feasts is:

⌊N/2⌋∑
k=1

(−1)k−1

(
N

k

)(
4N − 4k

2N − 4k

)
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Ornithology

Problem Statement:

Input: N vectors with D elements
Task: Find minimum number of steps to transform vectors such that:

▶ All vectors have equal coordinates in all dimensions except one

▶ Pairwise Manhattan distances are preserved

▶ One step = changing one coordinate of one vector by one

Manhattan distance
For x , y :

∑D
i=1 |xi − yi |



Ornithology

Key Observation:

▶ Consider vectors in pairs of dimensions

▶ If any triple of vectors forms a non-monotone sequence: Solution does not exist

▶ Otherwise, a solution is guaranteed to exist



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Idea of solution:

▶ Fix just two dimensions.

▶ The vectors must make a non-increasing/non-decreasing sequence.

▶ Grab a block of vectors and move so that they align with the next vector.



Ornithology

Efficient solution:

▶ Order vectors along first dimension.

▶ Determine which dimensions should be non-increasing/non-decreasing.

▶ Sort again.

▶ Check whether all dimensions are non-increasing/non-decreasing.

▶ The resulting order of vectors will be preserved in the solution.



Ornithology

Minimum number of operations:

▶ Assume middle vector m (or one of two middle vectors) stays fixed.
▶ If vector v has distance d from m along dimension D, it needs to move by

▶ distance d to reach the same value in dimension D,
▶ then distanace d to preserve the Manhatten distance from m.

▶ Precompute needed steps for all dimensions.

▶ Quickly compute total number of steps for each candidate dimension.
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JJ the Almighty

Problem Setup

▶ Input:
▶ Grid graph G
▶ Two edge-labelings S and T (labels ∈ {0, 1})

▶ Question: Can we transform S into T using:

1. Edge flips along horizontal/vertical lines
2. Edge flips along cycles

Key Observations

▶ Represent labelings as 0/1 vectors

▶ Operations (Oi ): vectors with 1s on flipped edges

▶ Let X = O1 ⊕ O2 ⊕ · · · ⊕ Ok be operation sum

▶ S ⊕ X = T ⇐⇒ S ⊕ T = X

▶ Goal: Check if S ⊕ T can be generated by operations



JJ the Almighty

Vector space generated by

Hi : Vectors for horizontal line operations (N vectors)

Vi : Vectors for vertical line operations (M vectors)

Ci : Vectors for cycle operations (very high number)

C ′
x ,y : Single tile cycles on x , y , equivalent to Ci (N ×M vectors)

Solution
▶ Note rank(⟨Hi ,Vi ,Ci ⟩) = rank(⟨Hi ,Vi ,C

′
x ,y ⟩)

▶ Solution exists if and only if: rank(⟨Hi ,Vi ,C
′
x ,y ⟩) = rank(⟨Hi ,Vi ,C

′
x ,y , S ⊕ T ⟩)

▶ Use Gaussian elimination to compute ranks.

▶ The matrix has size roughly (N ×M)× (N ×M).



JJ the Almighty - alternative approach

Transform grid to toroid

1. Identify top border vertices with bottom border vertices

2. Identify left border vertices with right border vertices

3. Result: Grid G becomes toroid G ′

Key Insights

▶ ⟨Hi ,Vi ,Ci ⟩ on G = cycle space on G ′

▶ Cycle space = set of all Eulerian circuits

▶ Solution exists ⇐⇒ X is Eulerian on G ′

Verification
Check that all vertex degrees in X on G ′ are even
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Book burning

▶ Input: Large string S and many small strings strings s1, s2, . . . sQ .

▶ Output: For each si count the number of occurences in S and then delete them
from S .

yabbadabbadoo

0123456789012
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Meetings - Solution

▶ Split the query ‘move from f to t’ into two queries: ‘remove from f ’ and ‘add to
t’.

▶ Keep set of active daggers in a set. Adding a dagger c : find two neighboring
daggers cp and cn.

▶ Intervals inside [cp + 1, c − 1] and [c + 1, cn − 1] are uncovered, but those in
[cp + 1, cn − 1] were also uncovered before.

▶ Update current uncovered number of intervals by the value
X = cnt([cp + 1, c − 1]) + cnt([c + 1, cn − 1])− cnt([cp + 1, cn − 1]), where cnt(I )
is the number of intervals completely inside the interval I .

▶ By similar logic, removing a dagger at c updates the total count by −X .
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Meetings - Online solution to queries

▶ Hence, we need to answer queries: Given a set of intervals N (endpoints in
[1, . . . , 105]), for given ℓ, r find the number of intervals contained in [ℓ, r ]. That
is, number of [x , y ] such that ℓ ≤ x , y ≤ r .

▶ Represent intervals as points in 2D-plane. Number of intervals contained in [x , y ]
is equal to the number of points in the rectangle with corners
(x , 1), (x , y), (N, y), (N, 1).

▶ Use your favourite data structure for storing points that allows queries for number
of points in rectangles, e.g., sparse 2D segment/fenwick tree

▶ Complexity O(N + Q logT logN), where T ≤ 105 is the maximum time.
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Meetings - Offline solution to queries

▶ Alternatively, we can solve the queries offline.

▶ We have two types of intervals: the original intervals and the query intervals.

▶ Build a segment tree over the timeline.

▶ When processing right endpoint of an original interval, update +1 to its left point.

▶ When processing right endpoint of a query interval, query the segment tree for
the interval – this gives the answer to the query interval.

▶ Complexity O((Q + N) logT ), where T ≤ 105 is the maximum time.
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Problem Statement

Given: Array A[1..N], threshold K . Compatible pair: gcd(Ai ,Aj) > 1. Smart group:
contiguous subseq. with ≥ K compatible pairs.

Key Insights:

1. gcd(Ai ,Aj) > 1 ⇐⇒ they share at least one prime divisor

2. Use two-pointers to count valid subsequences

3. Use inclusion-exclusion to count compatible pairs efficiently

Example: A = [2, 3, 4, 5, 6], K = 1
Compatible pairs: (2, 4), (2, 6), (3, 6), (4, 6) → 4 pairs
Smart groups: [2, 3, 4], [2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6], [4, 5, 6] → 5 groups



Solution Approach

Algorithm:

1. Preprocess: Prime Sieve

2. Two Pointers: Window [L,R]
▶ Extend R while quality < K
▶ If quality ≥ K : add N − R + 1
▶ Move L, update quality

3. Inclusion-Exclusion:
▶ Extract prime divisors
▶ Count pairs via subsets

Incl-Excl: For primes {p1, . . . , pk}:

pairs =
∑

∅̸=S⊆{1..k}

(−1)|S|+1cnt

(∏
i∈S

pi

)

Data Structures:

▶ counts[d]: # elements with divisor
d

▶ quality: # compatible pairs

Example - Adding 6 = 2 × 3:
Subsets: {2}, {3}, {2, 3}
+cnt[2] (sharing 2)
+cnt[3] (sharing 3)
−cnt[6] (avoid dbl-cnt)

Complexity:

▶ Sieve: O(M log logM), M = 5× 105

▶ Per element: O(2ω(Ai )) where ω(Ai ) ≤ 7

▶ Two pointers: O(N)

▶ Total: O(M log logM + N · 2ω(A))



Theatre



Theatre

Task
Given N regions in a painting and M forbidden pairs. We need to find the number of
ways to color the regions such that no forbidden pair shares the same color, for various
palette sizes (k).

Graph Modeling

We model this as a graph coloring problem G = (V ,E ):

▶ Regions → Vertices (V ).

▶ Forbidden pairs → Edges (E ).

▶ We seek the number of proper colorings of G using k colors.



Theatre continue

Definition
The Chromatic Polynomial P(G , k) counts the number of proper vertex colorings of
a graph G using at most k colors.

Strategy

Since we have many queries (T ) and the palette size (k) can be large, we must
compute the polynomial P(G , k) explicitly beforehand. Once we have the polynomial,
we can evaluate P(G , k) quickly for any k (modulo 109 + 7).

Base Case
If G has N vertices and no edges, P(G , k) = kN .



Theatre continue

Theorem
For any edge e = (u, v) in G:

P(G , k) = P(G − e, k)− P(G/e, k)

G − e (Deletion) The graph G with the edge e removed.

G/e (Contraction) The graph G where vertices u and v are merged into a single
vertex, maintaining connectivity to neighbors.

Complexity

The recursion depth is M, leading to O(2M · poly(N)) time complexity for computing
the polynomial.


