CTU Open 2024

Presentation of solutions

October 19, 2024

Flagbearer

Bear

» Just rewrite the nice ascii art compare, shift and print.

Bear

» Just rewrite the nice ascii art compare, shift and print.

» You can also observe a regular pattern in the rotation of the hands (with few
exceptions).

Fellow Sheep

Sheep

» The task boils down to finding the maximum flow between the pasture, and the
farmyard.

Sheep

» The task boils down to finding the maximum flow between the pasture, and the
farmyard.

» Maximum flow is equal to the minimum cut.

Sheep

» The task boils down to finding the maximum flow between the pasture, and the
farmyard.

» Maximum flow is equal to the minimum cut.

» Observation: for each segment, we can find the minimum cut separately.

Sheep

Sheep

Sheep

Sheep

Sheep

Sheep

min(A+ D,B+E,A+ C+E,B+C+D)

Sheep

Repeat for each segment, take the minimum of all segments.

Hamster

Hamster

» Input: N x M grid Py x Py, each cell with nonegative integer.
» Qutput: Find a maximum cost path from top left to bottom right.

Hamster

» Input: N x M grid Py x Py, each cell with nonegative integer.
» Qutput: Find a maximum cost path from top left to bottom right.
Observation 1: If N or M is odd there is a path going through all of the cells.

Hamster

» Input: N x M grid Py x Py, each cell with nonegative integer.
» Qutput: Find a maximum cost path from top left to bottom right.
Observation 1: If N or M is odd there is a path going through all of the cells.

Hamster

» Input: N x M grid Py x Py, each cell with nonegative integer.
» Qutput: Find a maximum cost path from top left to bottom right.
Observation 1: If N or M is odd there is a path going through all of the cells.

Hamster

» Input: N x M grid Py x Py, each cell with nonegative integer.
» Qutput: Find a maximum cost path from top left to bottom right.
Observation 1: If N or M is odd there is a path going through all of the cells.

Hamster

So the interesting case is when both N and M are even.

Hamster

So the interesting case is when both N and M are even.
Observation 2: Color the grid with chessboard pattern, start and end cell are both
black.

Hamster

So the interesting case is when both N and M are even.
Observation 2: Color the grid with chessboard pattern, start and end cell are both
black.

Colorally: Each path contains one more black than white cell.

Hamster
Observation 3: For each white cell, there is a path that only removes that cell.

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

» Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

» Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

» Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

» Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.

Hamster

Observation 3: For each white cell, there is a path that only removes that cell.
> Base case:

» Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.

Hamster

Summary:

» If N or M is odd, return sum of all cells.
» Else both N and M are even.

» Let Cpyn be the minimum value on a cell that has sum of its coordinates odd.
» Output sum of all cells minus Cpyp.

Pray mink

Mink

> Input: Integer 1 < N < 10°.

» Task: How many prime numbers can we obtain in a row when removing digits
from N one by one?

2293

Mink

N has at most 10 digits.
We can obtain 219 different numbers.
We can recursively try all possible sequences of removing numbers and use DP.
Checking primeness in time O(y/n) is fast enough.
> At most 2}21 (1F)\/W ~ 1.6 - 10° modulo operations.
The rest takes O(2'°¢") = O(n) time.

Fishception

Fish
» 4N points with integer coordinates in a plane.

» The points represent the vertices of non-intersecting rectangles, each one
contained within the next.

> Task: Determine the area of the smallest rectangle.

Fish
» 4N points with integer coordinates in a plane.

» The points represent the vertices of non-intersecting rectangles, each one
contained within the next.

> Task: Determine the area of the smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish
» Sort the points by the x-axis and by the y-axis.

» In each step, you take the leftmost, topmost, rightmost, and bottommost
unmarked points and mark them.

» The last 4 points form the desired smallest rectangle.

Fish

P It is necessary to take care of the case when a rectangle has edges parallel to the

axes.
[®

Ornithology

Ornithology

P Input: A bipartite graph with two parts drawn on two parallel straight lines.
» Qutput: The number of edge crossings.

» The edges do not cross at the vertices.

Ornithology

Ornithology

» Purely combinatorial problem, no geometry involved.

Ornithology

» Purely combinatorial problem, no geometry involved.

> Let V =AU B and. Edges {a1, b1} and {a2, bo} cross if and only if
ai < axAby < bjora; >axA by > by.

Ornithology

» Purely combinatorial problem, no geometry involved.

> Let V =AU B and. Edges {a1, b1} and {a2, bo} cross if and only if
ai < axAby < bjora; >axA by > by.

» O(|E|?) naive algorithm is too slow. (|E| ~2-10%).

Ornithology - fast solution

res

Ornithology - fast solution

res

Ornithology - fast solution

res

Ornithology - fast solution

res

Ornithology - fast solution

res

Ornithology - fast solution

res =3

Ornithology - fast solution

res=3+2

Ornithology - fast solution

res=3+2+2

Ornithology - fast solution

res=3+2+2

Ornithology - fast solution

res=3+2+2+6

Ornithology - fast solution

res=3+2+2+6+3

Ornithology - fast solution

res=34+2+2+6+3+2

Ornithology - fast solution

res=3+24+24+64+34+2+4+6

Ornithology - fast solution

res=3+24+24+64+34+2+4+6

Ornithology - fast solution

res=3+24+24+6+34+24+6+10

Ornithology - fast solution

tes=3+24+2+64+3+24+6+10+3

Ornithology - fast solution

tes=3+24+2+64+3+24+6+10+3

Ornithology - fast solution

res=3+24+24+6+3+2+6+10+3+ 14

Ornithology - fast solution

res=3+2+2+6+3+2+6+10+3+14+9

Ornithology - fast solution

res=34+2+2+6+3+24+6+104+3+14+9+7

Ornithology - fast solution

res=34+2+2+6+3+24+6+104+3+14+9+7

Ornithology - fast solution

Ornithology - fast solution

> Sort edges lexicographically.

Ornithology - fast solution

> Sort edges lexicographically.

> Initialize an array x of size n with Q’s

Ornithology - fast solution

> Sort edges lexicographically.
> Initialize an array x of size n with Q’s
> For edge {a, b} add 1 to index b and add 37—, x; to the result.

Ornithology - fast solution

> Sort edges lexicographically.
» Initialize an array suitable data structure x of size n with 0's
> For edge {a, b} add 1 to index b and add 37", ; x; to the result.

» Actually instead of a plain array, use your favourite data structure with fast point
update and range sum query.

Ornithology - fast solution

vvyyy

v

Sort edges lexicographically.
Initialize an array suitable data structure x of size n with 0's
For edge {a, b} add 1 to index b and add 37, ; x; to the result.

Actually instead of a plain array, use your favourite data structure with fast point
update and range sum query.

Anything reasonable with o(/N) complexity per query was intended to pass
(segment tree, fenwick tree, sqrt decomposition,. . .).

Ornithology - fast solution

vvyyy

v

Sort edges lexicographically.
Initialize an array suitable data structure x of size n with 0's
For edge {a, b} add 1 to index b and add 37, ; x; to the result.

Actually instead of a plain array, use your favourite data structure with fast point
update and range sum query.

Anything reasonable with o(/N) complexity per query was intended to pass
(segment tree, fenwick tree, sqrt decomposition,. . .).

Complexity: O(|E|log N) with e.g. segment tree.

Ornithology - fast solution without data structures

Ornithology - fast solution without data structures

» Divide and Conquer approach.

Ornithology - fast solution without data structures

» Divide and Conquer approach.

» Rough Idea: Split edges to two parts based on the endpoint in the first part and
recurse.

Ornithology - fast solution without data structures

» Divide and Conquer approach.

» Rough Idea: Split edges to two parts based on the endpoint in the first part and
recurse.

> Merge step: calculate the intersections between edges that have one endpoint in
left and one in right.

Ornithology - fast solution without data structures

» Divide and Conquer approach.

» Rough Idea: Split edges to two parts based on the endpoint in the first part and
recurse.

> Merge step: calculate the intersections between edges that have one endpoint in
left and one in right.

» Complexity O(|E|log N).

Pork cutting

Pork

» Decompose each number into bit.

» We need have to find such intervals, which have the number of 0-bits of K equal
to 0 while the number of 1-bits of K to be at least 1.

Pork

» Decompose each number into bit.

» We need have to find such intervals, which have the number of 0-bits of K equal
to 0 while the number of 1-bits of K to be at least 1.

» Sweep the array and calculate prefix sum for each bit.

> Keep the track of "correct” intervals by two pointers.

Pork

v

Decompose each number into bit.

v

We need have to find such intervals, which have the number of 0-bits of K equal
to 0 while the number of 1-bits of K to be at least 1.

» Sweep the array and calculate prefix sum for each bit.
> Keep the track of "correct” intervals by two pointers.
> Complexity: O(Niog(K))

Rabid rabbit

Rabbit

» Observe that there is relatively small number of Fibonacci numbers - less than
(log(lU]))

Rabbit

» Observe that there is relatively small number of Fibonacci numbers - less than
(log(lU1))
> Solve the problem for each Fibonacci number separately.

Rabbit

» Observe that there is relatively small number of Fibonacci numbers - less than
(log(lU]))

> Solve the problem for each Fibonacci number separately.

> Iterate through array, keeping track of last occurence of every number.

» Use two pointers technique to find "least interval” for each beginning, where the
actual Fibonacci number can be constructed.

Rabbit

» Observe that there is relatively small number of Fibonacci numbers - less than
(log(lU1))
> Solve the problem for each Fibonacci number separately.

> Iterate through array, keeping track of last occurence of every number.

» Use two pointers technique to find "least interval” for each beginning, where the
actual Fibonacci number can be constructed.

> Complexity: O(Niog(|U|)iog(|U]) + Qiog(|U]))

Watchdogs

Watchdogs

Watchcats

Watchcats

» Input: Tree T with g paths specified by endpoints.
» Task: For each a-b path P a vertex x on P with |d(a, x) — d(b, x)| < 1 must be
selected. One vertex can be selected for multiple paths.

» Qutput: Minimum number of vertices to select.

X
=
-+
©
O
<
O
-+
=

Watchcat Misa

Watchcats

» Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places — the vulnerability set.

Watchcats

» Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places — the vulnerability set.

» Each vulnerability set is either a single vertex or induces an edge.

Watchcats

» Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places — the vulnerability set.

» Each vulnerability set is either a single vertex or induces an edge.

> If it is a vertex, it must be covered by a watchcat. Let S C V be the set of
vertices v s.t.{v} is the vulnerability set for some mouse.

Watchcats

» Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places — the vulnerability set.

» Each vulnerability set is either a single vertex or induces an edge.

> If it is a vertex, it must be covered by a watchcat. Let S C V be the set of
vertices v s.t.{v} is the vulnerability set for some mouse.

» In the graph T[V(T)\ S] we are left with edges that must be covered.

Watchcats

» Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places — the vulnerability set.

» Each vulnerability set is either a single vertex or induces an edge.

> If it is a vertex, it must be covered by a watchcat. Let S C V be the set of
vertices v s.t.{v} is the vulnerability set for some mouse.

» In the graph T[V(T)\ S] we are left with edges that must be covered.

» Vertex Cover on the remaining forest!

Watchcat Ciginas

Watchcat Denis

Watchcats - How to solve it fast?

» The vertex cover can be solved in O(n) time on trees by DP:

Watchcats - How to solve it fast?

» The vertex cover can be solved in O(n) time on trees by DP:

» Hang the tree on r and for each vertex in bottom up manner compute:

Watchcats - How to solve it fast?

» The vertex cover can be solved in O(n) time on trees by DP:
» Hang the tree on r and for each vertex in bottom up manner compute:

» DI[v][0] - the size of smallest vertex cover S in the subtree rooted at v where

vegs.

Watchcats - How to solve it fast?

» The vertex cover can be solved in O(n) time on trees by DP:

v

Hang the tree on r and for each vertex in bottom up manner compute:

» DI[v][0] - the size of smallest vertex cover S in the subtree rooted at v where

vegs.

» D[v][1] - the size of smallest vertex cover S in the subtree rooted at v where
veS.

Watchcats - How to solve it fast?

v

The vertex cover can be solved in O(n) time on trees by DP:

Hang the tree on r and for each vertex in bottom up manner compute:
D[v][0] - the size of smallest vertex cover S in the subtree rooted at v where
vegs.

D[v][1] - the size of smallest vertex cover S in the subtree rooted at v where
veS.

Transition: D[V][0] = 3_cchiia(v) Plul[1] and

DIV][1] = > uechitd(vy Min{ D[u][0], D[u][1]}

Watchcats - How to solve it fast?

v

The vertex cover can be solved in O(n) time on trees by DP:

Hang the tree on r and for each vertex in bottom up manner compute:
D[v][0] - the size of smallest vertex cover S in the subtree rooted at v where
vegs.

D[v][1] - the size of smallest vertex cover S in the subtree rooted at v where
veS.

Transition: D[V][0] = 3_cchiia(v) Plul[1] and

DIV][1] = > uechitd(vy Min{ D[u][0], D[u][1]}

Result is min{D[r][0], D[r][1]}.

Watchcat Ritchie

Watchcat iwi

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.
> Build LCA!

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).
> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

> If d(¢,a) < d(¢, b), then the result lies on the path from a to /.

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

> If d(¢,a) < d(¢, b), then the result lies on the path from a to /.

» To find the central vertices of the path, jump from a to ¢ to distance
t = |d(¢,a)/2] in O(log n) steps using precomputed jumps from LCA. Let x be
the vertex at distance t from a.

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

> If d(¢,a) < d(¢, b), then the result lies on the path from a to /.

» To find the central vertices of the path, jump from a to ¢ to distance
t = |d(¢,a)/2] in O(log n) steps using precomputed jumps from LCA. Let x be
the vertex at distance t from a.

» Distinguish the case when the vulnerability set contains one or two vertices based
on parity of d(a, b). Even — {x}, odd — {x, p(x)} (p(x) is the parent of x).

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

> If d(¢,a) < d(¢, b), then the result lies on the path from a to /.

» To find the central vertices of the path, jump from a to ¢ to distance
t = |d(¢,a)/2] in O(log n) steps using precomputed jumps from LCA. Let x be
the vertex at distance t from a.

» Distinguish the case when the vulnerability set contains one or two vertices based
on parity of d(a, b). Even — {x}, odd — {x, p(x)} (p(x) is the parent of x).

» The case d(¢,a) > d(¢, b) is symmetric.

Watchcats - what about the vulnerability sets?

» Naively in O(n) per each mouse. Worst case Q(ng) — too slow.

» Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
¢ =lca(a, b).

> If d(¢,a) = d(¢, b), then the resulting set is just {/}.

> If d(¢,a) < d(¢, b), then the result lies on the path from a to /.

» To find the central vertices of the path, jump from a to /¢ to distance
t = |d(¢,a)/2] in O(log n) steps using precomputed jumps from LCA. Let x be
the vertex at distance t from a.

» Distinguish the case when the vulnerability set contains one or two vertices based
on parity of d(a, b). Even — {x}, odd — {x, p(x)} (p(x) is the parent of x).

» The case d(¢,a) > d(¢, b) is symmetric.

» Total running time: O(nlogn+ glogn-+ n) = O((n+ q)logn).

Watchcat Jiskra

Cowpproximation

Cowpproximation

» Input: Set of N circles, given by x, y and radius r.

» Task: Suppose each circle can travel with speed up to 1 unit of distance per
second. In how many seconds can all circles contain a common point?

Cowpproximation

» Combinatorial solution:

» Observation: We can assume each circle moves at maximum speed and waits at
some point if needed.

> Note after t seconds, a circle with radius r can cover exactly the points that are
within radius r + t.

> We look for minimum t such that if we increase all radii by t, all circles have
non-empty intersection.

» Binary search on t.

Cowpproximation

> Verify if the set of circles has nonempty intersection:

» Consider a circle C. If the common intersection contains the boundary of C, we
can find it as follows.

> The intersections with C give us intervals on the boundary of C.

Cowpproximation

> Verify if the set of circles has nonempty intersection:

» Consider a circle C. If the common intersection contains the boundary of C, we
can find it as follows.

> The intersections with C give us intervals on the boundary of C.

Cowpproximation

» Observation: Consider function f(x,y) = maxcecircesdist((x, y), C).
» The minimum of this function is the solution.

» This function is convex.

» Well implemented gradient descend may find the solution quickly.

Reptile eggs

Reptile eggs

» Input: Text s and a regular expression r.

» Qutput: Find the size of the longest subsequence of s that is matched with r.

Reptile eggs

» Input: Text s and a regular expression r.

» Qutput: Find the size of the longest subsequence of s that is matched with r.

Use dynamic programming!

Reptile eggs

Let A be the automaton accepting the set of strings described by r.

Reptile eggs
Let A be the automaton accepting the set of strings described by r.
» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)

Reptile eggs
Let A be the automaton accepting the set of strings described by r.

» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)
> Let B(q) be a function that is 0 if g is the starting state and —oo otherwise.

Reptile eggs
Let A be the automaton accepting the set of strings described by r.
» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)

> Let B(q) be a function that is 0 if g is the starting state and —oo otherwise.
> Miq,0] = B(q)

Reptile eggs
Let A be the automaton accepting the set of strings described by r.
» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)
> Let B(q) be a function that is 0 if g is the starting state and —oo otherwise.
> Miq,0] = B(q)

» Let Q' be all the possible states g’ such that reading character s; advances A to
state gand 1 < <|s|:

Mg, i] = max(B(q), M[q, i — 1], maxgcq (M[q', i —1]))

Reptile eggs
Let A be the automaton accepting the set of strings described by r.
» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)
> Let B(q) be a function that is 0 if g is the starting state and —oo otherwise.
> Miq,0] = B(q)

» Let Q' be all the possible states g’ such that reading character s; advances A to
state gand 1 < <|s|:

Mg, i] = max(B(q), M[q, i — 1], maxgcq (M[q', i —1]))

Output maximum number such that M[qr, /] is maximized and nonegative, where g is
a final state. If no such pair of g and i does not exist, output —1.

Reptile eggs
Let A be the automaton accepting the set of strings described by r.
» M]gq,] — the longest subsequence on the first i characters of s. (Memory table)
> Let B(q) be a function that is 0 if g is the starting state and —oo otherwise.
> Miq,0] = B(q)

» Let Q' be all the possible states g’ such that reading character s; advances A to
state gand 1 < <|s|:

Mg, i] = max(B(q), M[q, i — 1], maxgcq (M[q', i —1]))

Output maximum number such that M[qr, /] is maximized and nonegative, where g is
a final state. If no such pair of g and i does not exist, output —1.

Alternatively, the automaton can be represented implicitly by the regular expression. In
such case it is enough to consider a position inside the regex instead of a state in the
Automaton.

Pigpartite giraffe

"Hello
sweetie ;&

Pigpartite giraffe

» Input: Small bipartite graph (n < 8 vertices in each partite).
» Queries: Given vertices v, u, add a new x vertex with neighborhood
N(x) = (N(v) \ N(u)) U (N(u) \ N(v)).
> Task: After each query, compute the total sum of distances within the graph.

» Consider the incidence matrix of the graph. The query corresponds to taking a
XOR of two rows (equivalently sum mod 2).

Pigpartite giraffe

» Each vertex can be described by the set of its original ancestors (the original 8
vertices in its partite).

» Only 28 possible types of vertices in each partite, hence 2 - 28 different type of
vertices in total.

» Two vertices of the same type have the same neighborhood.

» Observation: Adding a new vertex of an existing type will not change distances
between other vertices.

Pigpartite giraffe

Adjacency matrix of a bipartite graph G looks like

A B
G= Al 0 M
B|MT 0

So M describes our bipartite graph: rows for partite A, columns for partite B.

M,, =1 <= v €A uc B have an edge.

Pigpartite giraffe

(1)
(2)
(3)
(4)

O O = =

O O = O

O = = O

= O = O

Pigpartite giraffe

(1)
(2)
(3)
(4)
(3@ 4)

O = = ==

o O O+ O

R Ok = O

[i e i)

Pigpartite giraffe

o O O+ o

R O~k M= O

=l =)

Pigpartite giraffe

1)

2)

3)

4)
(3@ 4)

Be404=3)

—~ N S

— O = = R

O O O O+~ O

= = O = = O

O = OF O

Pigpartite giraffe

(3a4)

— O R =

O OO o+ o

_H = O Rk KB O

Orr Pk OO

Pigpartite giraffe

(1)
(2)
(3)
(4)
(3@ 4)

3
(@fesg{1,2,3,4} i)

H O R B = =

OO O o+ Oo

el i = R S i)

O~ M= OO

Pigpartite giraffe

(4)

3)

(1)

Pigpartite giraffe

(1e2)

2 B @

(1)

— O - - O

Pigpartite giraffe

How to efficiently compute the distances?
First compute pair-wise distances and keep the distance matrix D (O(n?%)).

Keep D small by keeping only one vertex for each type.

>

>

>

» Keep the count for each type.

> We will keep at most d < 2 - 2" vertices in D.
>

Also keep track of the total distances for each vertex of D.

Pigpartite giraffe

>
>

vVvYyyvy

When adding a new vertex v:
If v has a new type:
> Compute the distance from v to all others with BFS (O(d?)).
» Update D for all other vertices: for each pair x,y € V, check if dist(x,v) +
dist(v,y) < dist(x,y) (0(d?)).
If v has an existing type:

» Just update the count of v's type.
» Sum the distances from each vertex (O(d)).

> Be careful about vertices of the same type as v! Especially if v is just the second
vertex of that type.

A new type appears at most 2 - 2" times.
Let's evaluate the total runtime.

O(n® +2"d? + Qd) with d = O(2").
O(n® + 23" + Q2") with n < 8,Q < 10°.
~ 29 4224 4 0%

