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Bear

▶ Just rewrite the nice ascii art compare, shift and print.

▶ You can also observe a regular pattern in the rotation of the hands (with few
exceptions).
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▶ The task boils down to finding the maximum flow between the pasture, and the
farmyard.

▶ Maximum flow is equal to the minimum cut.

▶ Observation: for each segment, we can find the minimum cut separately.
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Sheep

Repeat for each segment, take the minimum of all segments.
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▶ Input: N ×M grid PN × PM , each cell with nonegative integer.

▶ Output: Find a maximum cost path from top left to bottom right.

Observation 1: If N or M is odd there is a path going through all of the cells.
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So the interesting case is when both N and M are even.

Observation 2: Color the grid with chessboard pattern, start and end cell are both
black.

Colorally: Each path contains one more black than white cell.
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Hamster
Observation 3: For each white cell, there is a path that only removes that cell.

▶ Base case:

▶ Induction step: Remove 2 left/most most column or 2 first/last rows that do not
contain the cell in question.
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Hamster

Summary:

▶ If N or M is odd, return sum of all cells.
▶ Else both N and M are even.

▶ Let CMIN be the minimum value on a cell that has sum of its coordinates odd.
▶ Output sum of all cells minus CMIN .
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Mink

▶ Input: Integer 1 ≤ N ≤ 109.

▶ Task: How many prime numbers can we obtain in a row when removing digits
from N one by one?

2293

293 223 229

2923 2293

9 3 2



Mink

▶ N has at most 10 digits.

▶ We can obtain 210 different numbers.

▶ We can recursively try all possible sequences of removing numbers and use DP.
▶ Checking primeness in time O(

√
n) is fast enough.

▶ At most
∑10

i=1

(
10
i

)√
10i ≈ 1.6 · 106 modulo operations.

▶ The rest takes O(2log n) = O(n) time.

(1)
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Fish
▶ 4N points with integer coordinates in a plane.

▶ The points represent the vertices of non-intersecting rectangles, each one
contained within the next.

▶ Task: Determine the area of the smallest rectangle.
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▶ Sort the points by the x-axis and by the y-axis.
▶ In each step, you take the leftmost, topmost, rightmost, and bottommost

unmarked points and mark them.
▶ The last 4 points form the desired smallest rectangle.
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Fish

▶ It is necessary to take care of the case when a rectangle has edges parallel to the
axes.
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Ornithology

▶ Input: A bipartite graph with two parts drawn on two parallel straight lines.

▶ Output: The number of edge crossings.

▶ The edges do not cross at the vertices.



Ornithology

▶ Purely combinatorial problem, no geometry involved.

▶ Let V = A ∪ B and. Edges {a1, b1} and {a2, b2} cross if and only if
a1 < a2 ∧ b2 < b1 or a1 > a2 ∧ b2 > b1.

▶ O(|E |2) naive algorithm is too slow. (|E | ≈ 2 · 105).
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Ornithology - fast solution

▶ Sort edges lexicographically.

▶ Initialize an array x of size n with 0’s

▶ For edge {a, b} add 1 to index b and add
∑n−1

i=b+1 xi to the result.

▶ Actually instead of a plain array, use your favourite data structure with fast point
update and range sum query.

▶ Anything reasonable with o(N) complexity per query was intended to pass
(segment tree, fenwick tree, sqrt decomposition,. . . ).

▶ Complexity: O(|E | logN) with e.g. segment tree.
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Ornithology - fast solution without data structures

▶ Divide and Conquer approach.

▶ Rough Idea: Split edges to two parts based on the endpoint in the first part and
recurse.

▶ Merge step: calculate the intersections between edges that have one endpoint in
left and one in right.

▶ Complexity O(|E | logN).
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Pork

▶ Decompose each number into bit.

▶ We need have to find such intervals, which have the number of 0-bits of K equal
to 0 while the number of 1-bits of K to be at least 1.

▶ Sweep the array and calculate prefix sum for each bit.

▶ Keep the track of ”correct” intervals by two pointers.

▶ Complexity: O(Nl̇og(K ))
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Rabbit

▶ Observe that there is relatively small number of Fibonacci numbers - less than
(log(|U|))

▶ Solve the problem for each Fibonacci number separately.

▶ Iterate through array, keeping track of last occurence of every number.

▶ Use two pointers technique to find ”least interval” for each beginning, where the
actual Fibonacci number can be constructed.

▶ Complexity: O(Nl̇og(|U|)l̇ og(|U|) + Ql̇og(|U|))
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Watchcats

▶ Input: Tree T with q paths specified by endpoints.

▶ Task: For each a-b path P a vertex x on P with |d(a, x)− d(b, x)| ≤ 1 must be
selected. One vertex can be selected for multiple paths.

▶ Output: Minimum number of vertices to select.
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Watchcats

▶ Each a-b path (for pair of lairs (a, b)) has some set of vertices corresponding to
vulnerability places – the vulnerability set.

▶ Each vulnerability set is either a single vertex or induces an edge.

▶ If it is a vertex, it must be covered by a watchcat. Let S ⊆ V be the set of
vertices v s.t.{v} is the vulnerability set for some mouse.

▶ In the graph T [V (T ) \ S ] we are left with edges that must be covered.

▶ Vertex Cover on the remaining forest!
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Watchcats - How to solve it fast?

▶ The vertex cover can be solved in O(n) time on trees by DP:

▶ Hang the tree on r and for each vertex in bottom up manner compute:

▶ D[v ][0] - the size of smallest vertex cover S in the subtree rooted at v where
v /∈ S .

▶ D[v ][1] - the size of smallest vertex cover S in the subtree rooted at v where
v ∈ S .

▶ Transition: D[v ][0] =
∑

u∈child(v)D[u][1] and
D[v ][1] =

∑
u∈child(v)min{D[u][0],D[u][1]}.

▶ Result is min{D[r ][0],D[r ][1]}.
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Watchcats - what about the vulnerability sets?

▶ Naively in O(n) per each mouse. Worst case Ω(nq) – too slow.

▶ Build LCA! Suppose that a, b is a pair of lairs for some mouse and let
ℓ = lca(a, b).

▶ If d(ℓ, a) = d(ℓ, b), then the resulting set is just {ℓ}.
▶ If d(ℓ, a) < d(ℓ, b), then the result lies on the path from a to ℓ.

▶ To find the central vertices of the path, jump from a to ℓ to distance
t = ⌊d(ℓ, a)/2⌋ in O(log n) steps using precomputed jumps from LCA. Let x be
the vertex at distance t from a.

▶ Distinguish the case when the vulnerability set contains one or two vertices based
on parity of d(a, b). Even – {x}, odd – {x , p(x)} (p(x) is the parent of x).

▶ The case d(ℓ, a) > d(ℓ, b) is symmetric.

▶ Total running time: O(n log n + q log n + n) = O((n + q) log n).
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Cowpproximation

▶ Input: Set of N circles, given by x , y and radius r .

▶ Task: Suppose each circle can travel with speed up to 1 unit of distance per
second. In how many seconds can all circles contain a common point?



Cowpproximation

▶ Combinatorial solution:

▶ Observation: We can assume each circle moves at maximum speed and waits at
some point if needed.

▶ Note after t seconds, a circle with radius r can cover exactly the points that are
within radius r + t.

▶ We look for minimum t such that if we increase all radii by t, all circles have
non-empty intersection.

▶ Binary search on t.



Cowpproximation

▶ Verify if the set of circles has nonempty intersection:

▶ Consider a circle C . If the common intersection contains the boundary of C , we
can find it as follows.

▶ The intersections with C give us intervals on the boundary of C .
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▶ Verify if the set of circles has nonempty intersection:

▶ Consider a circle C . If the common intersection contains the boundary of C , we
can find it as follows.

▶ The intersections with C give us intervals on the boundary of C .



Cowpproximation

▶ Observation: Consider function f (x , y) = maxC∈circlesdist((x , y),C ).

▶ The minimum of this function is the solution.

▶ This function is convex.

▶ Well implemented gradient descend may find the solution quickly.



Reptile eggs



Reptile eggs

▶ Input: Text s and a regular expression r .

▶ Output: Find the size of the longest subsequence of s that is matched with r .

Use dynamic programming!
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Reptile eggs

Let A be the automaton accepting the set of strings described by r .

▶ M[q, i ] — the longest subsequence on the first i characters of s. (Memory table)

▶ Let B(q) be a function that is 0 if q is the starting state and −∞ otherwise.

▶ M[q, 0] = B(q)

▶ Let Q ′ be all the possible states q′ such that reading character si advances A to
state q and 1 ≤ i ≤ |s|:

M[q, i ] = max(B(q),M[q, i − 1],maxq′∈Q′(M[q′, i − 1]))

Output maximum number such that M[qf , i ] is maximized and nonegative, where qf is
a final state. If no such pair of qf and i does not exist, output −1.

Alternatively, the automaton can be represented implicitly by the regular expression. In
such case it is enough to consider a position inside the regex instead of a state in the
Automaton.
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Pigpartite giraffe

▶ Input: Small bipartite graph (n ≤ 8 vertices in each partite).

▶ Queries: Given vertices v , u, add a new x vertex with neighborhood
N(x) = (N(v) \ N(u)) ∪ (N(u) \ N(v)).

▶ Task: After each query, compute the total sum of distances within the graph.

▶ Consider the incidence matrix of the graph. The query corresponds to taking a
XOR of two rows (equivalently sum mod 2).



Pigpartite giraffe

▶ Each vertex can be described by the set of its original ancestors (the original 8
vertices in its partite).

▶ Only 28 possible types of vertices in each partite, hence 2 · 28 different type of
vertices in total.

▶ Two vertices of the same type have the same neighborhood.

▶ Observation: Adding a new vertex of an existing type will not change distances
between other vertices.



Pigpartite giraffe

Adjacency matrix of a bipartite graph G looks like

G =

A B

A 0 M
B M⊤ 0

So M describes our bipartite graph: rows for partite A, columns for partite B.

Mv ,u = 1 ⇐⇒ v ∈ A, u ∈ B have an edge.



Pigpartite giraffe

M =


(1) 1 0 0 0
(2) 1 1 1 1
(3) 0 0 1 0
(4) 0 0 0 1


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(
⊕

i∈S⊆{1,2,3,4} i) . . . .


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Pigpartite giraffe

M =



(1) (2) (3) (4) (1⊕ 2)

(1) 1 0 0 0 1
(2) 1 1 1 1 0
(3) 1 0 1 0 1
(4) 1 0 0 1 1

(3⊕ 4) 0 0 1 1 0
(3) 1 0 1 0 1





Pigpartite giraffe

▶ How to efficiently compute the distances?

▶ First compute pair-wise distances and keep the distance matrix D (O(n3)).

▶ Keep D small by keeping only one vertex for each type.

▶ Keep the count for each type.

▶ We will keep at most d ≤ 2 · 2n vertices in D.

▶ Also keep track of the total distances for each vertex of D.



Pigpartite giraffe

▶ When adding a new vertex v :
▶ If v has a new type:

▶ Compute the distance from v to all others with BFS (O(d2)).
▶ Update D for all other vertices: for each pair x , y ∈ V , check if dist(x , v) +

dist(v , y) < dist(x , y) (O(d2)).

▶ If v has an existing type:
▶ Just update the count of v ’s type.
▶ Sum the distances from each vertex (O(d)).

▶ Be careful about vertices of the same type as v ! Especially if v is just the second
vertex of that type.

▶ A new type appears at most 2 · 2n times.

▶ Let’s evaluate the total runtime.

▶ O(n3 + 2nd2 + Qd) with d = O(2n).

▶ O(n3 + 23n + Q2n) with n ≤ 8,Q ≤ 105.

▶ ≈ 29 + 224 + 225


