
acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

CTU Open 2024 is proud to feature the farm, one of the most advanced technologically oriented
institutions in the country. The farm is being constantly developed with single leading idea:
Programming opportunities at the farm are virtually endless, especially for a young gifted and
ambitious programmer like you. We collected a comprehensive set of those typical tasks. With
open mind, strong determination and some luck, you can advance to the level of the best minds
among magnificent coders, thinkers and animals at the farm. We wish your results in the Contest
to be even more excellent and outstanding.

Your programs can be written in C, C++, Java, Python or Kotlin programming languages.
The choice is yours but you will be fully responsible for the correctness and efficiency of your
solutions. All we need is the correct answer produced by your code in some appropriate time.

All programs will read text from the standard input only. The results must be written to the
standard output. You are not allowed to use any other files, communicate over network, or
create processes. Input and output formats are described in problem statements and must be
strictly followed. Values given on one line are separated by one space, if not specified otherwise.
Do not print anything more than required. Each printed text line (including the last one) should
be terminated by a newline character (“\n”), which is not considered to be a part of that line.

Good luck, thank you for coming to our contest, and see you again in 2025!

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Flag Bearer

bear.(c|cpp|py), Bear.(java|kt)

The bears have decided to abandon their solitary lives as predators and hunt together. They
have formed two groups on the opposite sides of the farm and are preparing to abduct several
smaller piglets, whose fate now seems very uncertain.

To prevent their plans from being revealed, the bears will communicate during the operation at
a distance using the semaphore alphabet, which they will further encrypt with Caesar’s cipher.
Caesar’s cipher is defined by a single non-negative integer C. Each letter in the message is
encrypted by replacing it with the letter that is C positions further in the alphabet. When the
position of the used letter goes beyond the end of the alphabet, counting continues cyclically from
the start of the alphabet. So, for example, with C = 5, the second-to-last letter in the alphabet
is encrypted as the fourth letter in the alphabet. Each letter of the semaphore alphabet is
encoded by the position of two lower or upper limbs of a signaling mammal that stands upright,
facing the recipient of the message. In the diagram shown below, the center of the diagram
represents the torso position of the signaling mammal, and its two limbs are represented by two
of the eight possible segments radiating from the center. The assignment between limb positions
and letters of the alphabet is provided on a separate page (following the samples).

Now, the bears are going to encrypt their short messages. They are good at semaphore alphabet,
but they need some help with Caesar’s cipher. Please provide them with this assistance.

Input Specification

The first input line contains two integers N (1 ≤ N ≤ 26) and C (0 ≤ C ≤ 25), representing the
length of the word to be encrypted and the constant of the Caesar cipher. Next, there are 9N
lines, each with 9 characters. Each 9 successive lines represent one character in the message.
The characters are “.”, “*”, or “#”. Asterisk “*” appears only once in each 9 lines and it
corresponds to the center of the semaphore scheme. Hash symbols “#” correspond to limbs.
Coded words use standard English alphabet with 26 characters.

Output Specification

Print the encrypted message, in the same format as the input.

Sample Input 1

5 9

.........

.........

.........

.........

.###*....

.....#...

......#..

.......#.

.........

.........

.......#.

......#..

.....#...

....*....

...#.....

..#......

.#.......

.........

.........

.......#.

......#..

.....#...

....*....

....#....

....#....

....#....

.........

.........

.......#.

......#..

.....#...

....*....

....#....

....#....

....#....

.........

.........

....#....

....#....

....#....

.###*....

.........

.........

.........

.........

Output for Sample Input 1

.........

.........

.........

.........

.###*....

....#....

....#....

....#....

.........

.........

.#.....#.

..#...#..

...#.#...

....*....

.........

.........

.........

.........

.........

.........

.........

.........

....*....

...#.#...

..#...#..

.#.....#.

.........

.........

.........

.........

.........

....*....

...#.#...

..#...#..

.#.....#.

.........

.........

.#.......

..#......

...#.....

....*###.

.........

.........

.........

.........

Semaphore alphabet

Down Left/Down Left Left/Top
.........

.........

.........

.........

....*....

....#....

....#....

....#....

.........

.........

.........

.........

.........

....*....

...#.....

..#......

.#.......

.........

.........

.........

.........

.........

.###*....

.........

.........

.........

.........

.........

.#.......

..#......

...#.....

....*....

.........

.........

.........

.........

Top Top/Right Right Down/Right
.........

....#....

....#....

....#....

....*....

.........

.........

.........

.........

.........

.......#.

......#..

.....#...

....*....

.........

.........

.........

.........

.........

.........

.........

.........

....*###.

.........

.........

.........

.........

.........

.........

.........

.........

....*....

.....#...

......#..

.......#.

.........

Figure 1: Semaphore Alphabet

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Cowpproximation

cow.(c|cpp|py), Cow.(java|kt)

There are cows in a 2 by 2 kilometer field. The cows want to have a group meeting, and all of
them must attend! It is up to you to plan the meeting to take place as soon as possible.

To model this problem, we approximate each cow as a circle, and for our purposes, there are no
collisions — cows can pass through each other freely.

The i-th cow is represented by its initial position (xi, yi) and its radius ri, all distances are
measured in meters. You can tell each cow to travel in any direction from its initial position at a
constant speed from 0 to 1 meter per second. The meeting takes place as soon as all cows occupy
the same point in the plane, i.e., there exists a point contained within all circles representing
the cows. Find the minimum time in seconds required for the cows to meet.

Input Specification

The first input line contains a single integer N (1 ≤ N ≤ 103), representing the number of cows.
Each of the following N lines contains three space separated integers xi, yi, ri, describing a cow,
where −103 ≤ xi, yi ≤ 103 and 1 ≤ ri ≤ 103.

Output Specification

Output the minimum time T in seconds after which all the cows meet. Your answer will be
considered correct if it has an absolute or relative error at most 10−5. Formally, let TOPT

be the optimal value. Then your answer is considered correct if either |T − TOPT | ≤ 10−5 or
∣

∣

∣

T−TOPT

max{1,TOPT }

∣

∣

∣
≤ 10−5 holds.

Sample Input 1

2

-10 3 2

10 3 4

Output for Sample Input 1

7.0000000

Sample Input 2

3

-4 -4 1

6 0 3

0 8 5

Output for Sample Input 2

3.7039181

(0, 0)

(−10, 3) (10, 3)

Figure 1: Visualization of sample input 1. The empty dot represents the meeting location.

(6, 0)

(0, 8)

Figure 2: Visualization of sample input 2. The empty dot represents the meeting location.

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Reptile Eggs

eggs.(c|cpp|py), Eggs.(java|kt)

The farm generates additional income by producing decorated turkey eggs. The farmers, being
excessively creative, design various patterns and apply them to the surface of the eggs. The
customer orders are handled with the help of specially trained reptile specimen, often it is a
Komodo dragon or a member of another suitable reptile species. The reptile had been trained to
understand and execute commands in a specific formal language. A customer order is translated
into a command for the reptile which then selects a corresponding group of eggs from the
production line. The selected eggs are then packed and prepared for shipment.

The command is a regular expression, and the reptile selects such sequence of eggs on the line
that exactly matches the given regular expression. The selected sequence does not have to
be contiguous, and it does not have to be specified uniquely by the expression. However, the
selected sequence always has to be as long as possible, to keep customers satisfied. The reptile
recognizes the beginning and the end of the production line, thus the first egg in the selected
sequence is not further from the end of the production line than the last egg in the sequence.

Sometimes, the customer’s order, and consequently the regular expression, is so demanding that
no unempty sequence of eggs can match the expression. In such situation, the reptile is still able
to distinguish between two possible scenarios. In the first scenario, an empty sequence containing
no eggs can still match the expression. In the second scenario, even an empty sequence of eggs
cannot match the expression. In the first scenario, the reptile remains calm, in the second
scenario, the reptile gets dangerously annoyed and has to be calmed down.

Check the reptile’s operation and, for each given regular expression, determine the maximum
possible number of selected eggs in the shipment.

Below is the specification of the regular expressions that control the reptile’s activity:

• Each expression is a finite sequence of lowercase letters of the English alphabet, extended
with the characters ?, *, [,], (,).

• Each letter of the English alphabet represents an egg with a specific pattern corresponding
to that letter.

• The question mark (?) represents one egg with any pattern.

• The brackets [and] are always correctly paired, and inside them, there may be only
lowercase letters of the English alphabet, at least one. This pair of brackets and the
letters within them always represent a single egg on the line, one whose pattern matches
any letter inside the brackets.

• The asterisk (*) replaces any number of repetitions of the sequence immediately preceding
the asterisk. This sequence is either a single letter or a question mark or a portion of the
expression enclosed in parentheses () or square brackets []. The number of repetitions
may also be zero.

• Parentheses (and) are always correctly paired and are always immediately followed by
an asterisk. Inside these parentheses, there is always a regular expression adhering to the
rules described above, but it does not contain any parentheses.

Input Specification

The first input line contains integer N (1 ≤ N ≤ 1000). The second input line contains a string
of N lowercase English letters representing the types of patterns on the eggs on the production
line. Each letter corresponds to one egg. The beginning of the production line corresponds to
the beginning of the string. The third input line contains integer M (1 ≤ M ≤ 1000). The
fourth input line contains a string of M characters representing the regular expression given to
the reptile.

Output Specification

Output single integer E, the maximum possible number of eggs in the shipment selected from
the given production line, according to the given regular expression. If the regular expression
cannot be matched output −1.

Sample Input 1

3

aba

2

a*

Output for Sample Input 1

2

Sample Input 2

3

ctu

4

open

Output for Sample Input 2

-1

Sample Input 3

4

food

13

([ba]g??t*e)*

Output for Sample Input 3

0

Sample Input 4

20

alotofeggcellenteggs

14

[only]*(egg)*?

Output for Sample Input 4

10

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Fishception

fish.(c|cpp|py), Fish.(java|kt)

A farmer marked a large rectangle on his field using four stakes hammered into the ground at
the corners. The rectangle had a non-zero area. His plan was to dig a pond for pike there.

Unfortunately, the next morning, he found out that a new law on the minimum size of the living
space for pike was being proposed. He decided to prepare for the new conditions. He pulled the
stakes out of the ground and hammered them in at new positions. Because he wanted to use
all the already prepared land, he made sure that the previous rectangle was entirely contained
within the new, larger one. He was so meticulous, that no point on the boundary of the new
rectangle coincided with a point on the boundary of the previous rectangle.

As it often happens, the next morning, he learned that the minimum size of the living space for
pike would be even larger than what had been discussed the previous day. So, he repeated the
process, pulled the stakes out, and hammered them in at new positions, only to find out the
next day that the space needed to be expanded again. This repeated for several days.

Finally, when the time to vote came, the proposed law was unanimously rejected. The farmer
then decided to return to the original marked area. He pulled out the stakes, thinking he would
simply place them back into the holes left by the stakes. However, he suddenly realized that
his entire field was now full of holes from all the constant stake-shifting, and he no longer knew
which four points represented the original rectangle. To make matters worse, he received a call
from the Land Management Office, urgently requesting the area of the land he planned to use
for the pond.

We know the coordinates of all the holes left by the stakes. Help the farmer determine the area
of the original, smallest rectangle.

Input Specification

The first input line contains one integer N (4 ≤ N ≤ 2 · 105), the number of stakes. N is always
a multiple of 4. Each of the next N lines contains two integers x and y (−109 ≤ x, y ≤ 109),
specifying the coordinates of one stake. No two stakes share the same coordinates.

Output Specification

Output one integer specifying the area of the rectangle marked on the first day of the farmer’s
efforts.

Sample Input 1

16

0 1

1 0

-1 0

0 -1

2 2

-2 2

2 -2

-2 -2

0 6

0 -6

6 0

-6 0

7 7

-7 7

-7 -7

7 -7

Output for Sample Input 1

2

Sample Input 2

16

-3 7

-2 6

-1 5

0 4

0 3

-1 2

-2 1

-3 0

3 3

3 4

6 2

6 5

9 1

9 6

12 0

12 7

Output for Sample Input 2

3

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Pigpartite Giraffe

giraffe.(c|cpp|py), Giraffe.(java|kt)

There are two fenced areas next to each other: one houses a group of pigs, and the other houses
a herd of giraffes. While pigs cannot visit the giraffes, and giraffes cannot visit the pigs, they
can communicate over the fence. In fact, they have become such good friends that pigs prefer
to talk to giraffes instead of other pigs, and giraffes feel the same way—they would rather talk
to pigs than to other giraffes.

This relationship is mutual: if a pig likes to talk to a specific giraffe, that giraffe likes to talk
back to that same pig. However, no pig likes to talk to another pig, and no giraffe likes to talk
to another giraffe.

If an animal wants to send a message to another animal, even if it doesn’t like to talk to it
directly, it can do so by passing the message through other animals. Messages can only be
passed between animals that like to talk to each other.

To quantify the amount of chatter, we define the noise level between two animals as the minimum
number of talks required for a message to be passed from the source animal to the target animal.
If a message cannot be passed between two animals, the noise level for that pair is 0. For instance,
if two animals like to talk directly to each other, their noise level is 1. If the message must pass
through one other animal, the noise level is 2, and so on.

We are interested in the total noise level, which is the sum of noise levels for all unordered pairs
of different animals. Note that the noise level between two different animals is only counted
once.

The problem is, the number of animals keeps increasing. New animals are born by combining
the properties of two existing animals of the same kind, referred to as the parents. The new
animal will belong to the same kind as its parents (pig or giraffe). Additionally, the newborn
animal can immediately start talking to other animals.

The newborn animal likes to talk to exactly the animals that like to talk to exactly one of its
parents. Along with the initial setup of animals and their talking preferences, you will be given
a sequence of queries describing the birth of new animals. After each animal is born, your task
is to calculate the total noise level.

Input Specification

The first input line contains three integers A,B,M (1 ≤ A,B ≤ 8, and 0 ≤ M ≤ A · B), the
number of pigs, the number of giraffes, and the number of initial pairs of animals that like to
talk to each other, respectively.

Each of the next M lines each contains two integers 0 ≤ a < A, 0 ≤ b < B, indicating that pig
number a likes to talk to giraffe number b.

The next line contains integer Q (1 ≤ Q ≤ 105), the number of new animals to be born. Each
of the following Q lines describes birth of one animal, and it contains a character X and two

integers p and q. The character X is either “A” or “B”, indicating that the newborn is either
a pig or a giraffe, while p and q are the numbers of its two parents. The newborn animal is
assigned the smallest unused positive number within its kind. It is guaranteed that p and q

always refer to existing animals.

Output Specification

Output Q lines. On the i-th line, print the total noise level after i-th birth of an animal.

Sample Input 1

4 4 4

0 0

1 1

2 2

3 3

2

A 0 1

A 0 1

Output for Sample Input 1

22

30

Sample Input 2

3 3 5

0 0

1 0

1 1

2 1

2 2

3

B 0 1

B 3 2

B 3 4

Output for Sample Input 2

42

61

82

0 1 2

0 1 2 3 4 5

Figure 1: Sample Input 2 after all queries are done.

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Hamster

hamster.(c|cpp|py), Hamster.(java|kt)

The hamster lives in a rectangular enclosure with floor divided into square fields of the same
size, forming a grid. In each field, several larvae are dwelling. The hamster decided to walk
around the enclosure, collect the larvae into his bowl, and bring them home for later culinary
use. Additionally, he decided to place a trap for common starlings on each field so that they
would no longer fly in and steal the larvae. The hamster starts in the northwest corner of the
enclosure. From each visited field, he collects the larvae and puts them in the bowl, places a
trap on the field, and moves to the next field, which shares a side with the field he is just leaving.
The hamster will finish his journey in the southeast corner of the enclosure. But there is a catch,
the hamster cannot return to fields he has already visited, otherwise he would get caught in one
of his own traps.

We know how many larvae are in each field. Find out the maximum number of larvae the
hamster can collect on his journey and avoid all traps.

Input Specification

First line contains two numbers N,M (2 ≤ N,M ≤ 1000), the number of rows and the number
of columns in the grid of fields in the hamster’s enclosure. Then follow N lines, each contains M
numbers representing numbers of larvae in particular fields in the enclosure. Each line represents
one row in the grid. The northwest corner of the grid corresponds to the first number in the
first of these lines, the southeast corner of the grid corresponds to the last number in the last of
these lines.

The number of larvae on any field is between 0 and 1000 inclusive.

Output Specification

Output a single number, the maximum number of larvae the hamster can collect.

Sample Input 1

2 2

1 2

3 4

Output for Sample Input 1

8

Sample Input 2

3 4

2 2 4 0

1 3 1 0

2 5 3 1

Output for Sample Input 2

24

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Pray Mink

mink.(c|cpp|py), Mink.(java|kt)

Aaron, the mink, has two loves: biscuits and prime numbers. Growing up on our farm, he
developed a special fondness for both. In the kitchen, he has cookie cutters shaped like the
digits 0 through 9. He fills them with dough, bakes the digits, and arranges them in a row on a
tray to form a whole positive number.

Recently, Aaron managed to bake and arrange a prime number. After admiring it, he got hungry
and ate one of the digit-biscuits. Without rearranging the remaining digits, he simply shifted
them left or right to fill the gap. To his delight, the new number was still prime!

Now, Aaron is curious to see how many prime numbers he can find in a row through this process.
Each time, he eats a digit, shifts the remaining ones, and checks if the new number is prime. If
leading zeros appear after eating a digit, he happily eats those as well right away. However, if
at any point the resulting number is not prime, the process ends immediately.

Today, Aaron baked a new set of digits and formed a new number, not necessarily prime. Aaron’s
goal is to see the maximum number of prime numbers in a row, starting with the initial number
and continuing for as long as possible.

Your task is to compute the maximum possible number of occurrences of prime numbers in this
process.

Input Specification

The input consists of a single line with integer N (1 ≤ N ≤ 109), the number baked by Aaron.

Output Specification

Output one integer specifying the maximum number of prime numbers that Aaron can see
through his process.

Sample Input 1

773

Output for Sample Input 1

3

Sample Input 2

300007

Output for Sample Input 2

2

Sample Input 3

11

Output for Sample Input 3

1

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Ornithology

ornithology.(c|cpp|py), Ornithology.(java|kt)

On the outskirts of the town, close to the farm, there stand two parallel power lines, separated
by a narrow dirt road. The power lines were a favorite resting spot for a variety of birds.

Today, on this cool autumn morning, the lines are filled with a group of birds. On the first line
there are n consecutive positions for birds numbered 0, 1, . . . , n − 1. On the second power line
there are also n positions numbered in the same manner.

Initially, every position of the first line is occupied by some birds (possibly zero) and there are
no birds on the second power line. Each bird has its desired position to fly to on the second
line. No two birds on the same position on the first line share the same desired position.

At one moment, all the birds at once will decide to fly to their desired positions. Every bird
flies along the straight line segment connecting its initial and desired position.

It can happen that some pairs of birds crash into each other during their flight. This can
happen when their corresponding line segments cross. We shall call such unordered pair of birds
dangerous pair.

For example, if a bird on position 2 wants to go to position 1 and the bird on position 1 wants
to go to position 2, their paths cross.

The birds will not collide if their paths have the same desired position (on the second line) or
if they start from the same position (on the first line). In other words a pair of birds with the
same initial or desired positions is not considered a dangerous pair.

The task is very simple. Compute the number of dangerous pairs of birds.

Input Specification

First line of input contains an integer n (1 ≤ n ≤ 2 · 105) representing the number of positions
on both power lines.

Each of the next n lines describe the desired positions of the birds. The i-th line starts with an
integer pi (0 ≤ pi ≤ n) representing the number of birds on position i.

Then, there are pi distinct numbers qi,1, . . . , qi,pi(0 ≤ qi,j ≤ n−1) representing the desired places
of the pi birds.

It is guaranteed that the sum
∑n−1

i=0
pi does not exceed 2 · 105.

Output Specification

Output exactly one line containing one integer – the number of dangerous pairs of birds.

Sample Input 1

3

2 1 2

1 0

1 1

Output for Sample Input 1

3

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

P||k Cutting

pork.(c|cpp|py), Pork.(java|kt)

The farmer needs some pork to be packed. This may take several days, so the farmer has
allocated N possible days when the packing can be performed. The whole packing process
needs to be completed in a sequence of consecutive days with at least one day. This sequence
of days, also called an interval, may not necessarily contain all allocated days.

The farmer has called the bulls and donkeys to help and to do the entire packing job. The bulls
and donkeys do not work for free, so the farmer assigned to each day a particular number of
cookies he is willing to pay, if the animals work on that day.

The bulls, not being the smartest animals, protested against using such advanced mathematics
as summing several numbers of cookies in several consecutive days. They insist on being paid a
fixed amount of K cookies, no matter when or for how long they work.

On the other hand, the donkeys considered the sum to be a too ordinary mathematical opera-
tion and required that they are paid the bitwise OR of the numbers of cookies offered for the
individual days.

Bitwise OR of two given integers is computed by taking their binary representation and keeping
the digit 1 in the result on exactly those positions where at least one of the given two integers
has digit 1. For instance, bitwise OR of 9 and 5 is 13.

Furthermore, the bulls and donkeys are willing to work only when they are both paid the exact
same total amount. The farmer, finding himself unwilling to deal with the animals any longer,
agreed to their conditions and wants to know how many options does he have for scheduling the
work. As such, your task is to count the total number of distinct non-empty intervals of days
on which the animals are willing to work. Counted intervals may overlap.

Input Specification

The first input line contains two integers N , K (1 ≤ N ≤ 4 · 105, 0 ≤ K ≤ 109), the total
number of days in which pork can be packed on the farm, and the amount of cookies the bulls
want to be paid.

The second line contains N integers ai (0 ≤ ai ≤ 109), the offered number of cookies on the i-th
day.

Output Specification

Output single integer P , the number of intervals in which the animals are willing to work
together.

Sample Input 1

5 3

1 2 1 2 3

Output for Sample Input 1

11

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Rabid Rabbit

rabbit.(c|cpp|py), Rabbit.(java|kt)

Famous magician Leonardo from Pisa is about to visit the farm and amuse the staff with his
tricks. There is a long row of rabbit hutches along one wall of the farm yard. Each hutch is
permanently occupied by some number of rabbits. To perform his tricks on rabbits, the magician
needs to exploit the row of rabbit hutches. However, the farm is planning maintenance, and
they can offer the magician only one contiguous segment of the row of the hutches. To help
Leonardo, they compiled a list of segments. Leonardo will choose one segment from the list and
the hutches outside the segment will be inaccessible to him due to the maintenance.

Before Leonardo chooses a suitable segment, he has to consider his additional restrictions. Each
day, Leonardo will perform one trick on the chosen segment. Fundamental part of each trick
is a pair of rabbit hutches selected in the segment in such a way that when the total number
of rabbits in both hutches is calculated, it is equal to one of the so-called positive Fibonacci
numbers. Each day, the calculated Fibonacci number has to be different from all Fibonacci
numbers calculated in the previous days, otherwise the principle of magician’s tricks could be
cracked and publicized. When Leonardo cannot perform more tricks, he has to leave the farm.

Help Leonardo to determine how many days at most he can stay on the farm, for each given
segment of rabbit hutches.

The so-called positive Fibonacci numbers form an infinite sequence of integers. It starts with
integers 1 and 2, and each next entry in the sequence is the sum of two entries immediately
preceding this entry in the sequence.

Input Specification

The first input line contains two integers N,Q (1 ≤ N,Q ≤ 105), the number of rabbit hutches in
the row, and the number of entries in the list of segments compiled by the farm. The second line
contains N space-separated integers A0, A1, . . . , AN−1 (1 ≤ Ai ≤ 109), specifying the number of
rabbits dwelling in each hutch, starting from the beginning of the row. The following Q lines
represent the list of segments available to Leonardo. Each segment is specified on one line which
contains two integers P,R (0 ≤ P < R ≤ N − 1) denoting the number of the first and the
last hutch in the hutch segment. The hutches in the row are numbered by consecutive integers
0, 1, . . . , N − 1.

Output Specification

Output Q lines, each with a single integer specifying the number of days Leonardo can spend
on the farm performing his tricks, if the respective segment in the input list will be available to
him.

Sample Input 1

8 4

7 3 2 10 3 4 1 2

0 5

1 2

4 5

4 7

Output for Sample Input 1

2

1

0

2

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Fellow Sheep

sheep.(c|cpp|py), Sheep.(java|kt)

The sheep are fleeing from the wolf that has entered their pasture. To save themselves, they
must escape through fenced paths designated for sheep shearing. The paths are connected to
each other and eventually lead to a single exit into the farmyard, where the sheep that escape the
wolf will be safe. The paths are arranged in a special formation, consisting of several segments
of the same shape, with each segment containing 5 paths. The entry point of each segment,
except for the first, is also the exit point of the previous segment.

The entry point of the first segment is in the pasture, and the exit point of the last segment
leads into the farmyard. The sheep always run in the same direction along one path, and it
never happens that two sheep run along the same path in opposite directions. The sheep cannot
jump over the fence of the path. The sheep’s escape is further complicated by the fact that
halfway along each path there is an automatic gate that allows a certain number of sheep to
pass through before closing itself, making the path impassable for other sheep. However, the
wolf can jump over the gates on the paths, making him extremely dangerous. We assume (and
the sheep assume as well) that the wolf can catch only those sheep which are no longer able to
reach the farmyard due to the closed gates.

Determine how many sheep can escape from the wolf at most, given that for each gate it is
known how many sheep it will let through.

The diagram shows the paths arranged in a formation of 4 segments.

A1

D1

C1

B1

E1

A2

D2

C2

B2

E2

A3

D3

C3

B3

E3

A4

D4

C4

B4

E4

Input Specification

The first input line contains a single integer N (1 ≤ N ≤ 105), the number of segments in the
path formation. Each of the next N lines contains 5 space separated integers Ai, Bi, Ci, Di, Ei

(1 ≤ Ai, Bi, Ci,Di, Ei ≤ 108), the numbers of sheep which can pass through the corresponding
gate in the i-th segment before the gate closes. The letters A, B, C, D, E correspond to the
notation in the image above. Segments are linked in the same order as they appear in the input.
The entry of the first segment is in the pasture, the last segment leads into the farmyard.

Output Specification

Output a single integer, the maximum number of sheep which can escape the wolf.

Sample Input 1

2

3 6 2 5 2

7 4 3 1 4

Output for Sample Input 1

7

acm
cz

acm
cz

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
Masaryk University University of Žilina

Pavol Jozef Šafárik University in Košice Comenius University
Slovak University of Technology University of West Bohemia

CTU Open Contest 2024

Watchdogs

watchdogs.(c|cpp|py), Watchdogs.(java|kt)

In a small town called Kocourkov, surrounded by hills and woods, a strange problem has ap-
peared. The town, known for its cozy pubs and friendly people, had always been peaceful –
until a problem with mice showed up.

But these weren’t just any mice. They were smart, quick and seemed to be everywhere at the
same time. They had taken over the town’s favorite pubs, running through the rafters, nibbling
on crumb, and causing a lot of trouble.

In Kocourkov, there are N places and exactly N − 1 roads and it is possible to reach any place
from any other place in Kocourkov via the roads. Each road connects a pair of places.

The town council held an emergency meeting in the largest pub U Nacpané Myši. They noticed
that the mice are running across the city in a very particular pattern. Each mouse has exactly
two lairs scattered across the city and runs only between its two lairs. Each lair is located in
one of the places. It has also been observed that the mice are vulnerable about halfway through
their usual path. Formally, if mouse’s lairs are in places A and B then the mouse is vulnerable at
place C if and only if |d(C,A)−d(C,B)| ≤ 1 and C is on the path from A to B. In this context,
d(X,Y) denotes the distance betwen places X and Y measured in the number of roads on a path
from X to Y . Therefore, there may be more than one place where a mouse is vulnerable and a
mouse might also be vulnerable in its own lair. After long discussion, the ultimate solution was
proposed. The town will place watchcats around the town. A watchcat can get rid of a mouse
if the watchcat is on a place where the mouse is vulnerable. One watchcat can get rid of any
number of mice. Watchcats are lazy, each of them will always sit on its chosen place, and it will
not move away from it.

As purchasing watchcats is not cheap, the town council wants to minimize the amount of watch-
cats to buy. Help them with this task.

Input Specification

First line of input consists of two numbers N,K (2 ≤ N ≤ 105, 0 ≤ K ≤ 105), the number of
places in Kocourkov, and the number of mice present in Kocourkov.

The next N − 1 lines describe the road network in Kocourkov. Each of these lines contains two
integers U, V (0 ≤ U, V ≤ N − 1) indicating that the places U and V are connected by a direct
road.

The next K lines describe the pairs of lairs of the mice. On each of these lines, there are two
numbers P,Q (0 ≤ P,Q ≤ N − 1) representing the fact that a mouse has lairs in the places P

and Q. It is guaranteed that P 6= Q.

Output Specification

Output a single number representing the minimal number of watchcats to distribute in Ko-
courkov which will guarantee that every mice is eventually caught.

Sample Input 1

7 5

0 1

0 2

2 5

1 4

4 6

1 3

1 6

1 3

3 2

1 5

2 5

Output for Sample Input 1

3

0

2

5

1

3 4

6

In the sample input, it is optimal to place the watchcats at places 4, 1, 2. The first mouse is
caught by the cat at place 4. The second and the third mouse are caught by the cat at place 1.
The last two mice are caught by the cat at place 2.

