CTU Open 2019

Presentation of solutions

October 19, 2019

Beer Bill

» Task: Given a pub bill compute the bill total rounded up to
nearest 10s.

111 540, -
123,-1 11

Beer Barrels

» Task: Given all numbers made of K digits with values A or B,
sum up all occurences of digit C.

Beer Barrels

» Task: Given all numbers made of K digits with values A or B,
sum up all occurences of digit C.

If A=4 B =5 and C =4, the number of C’s in the following set
of numbers is 12.

444 455
445 545
454 554
544 555

Beer Barrels

» Task: Given all numbers made of K digits with values A or B,
sum up all occurences of digit C.

If A=4 B =5 and C =4, the number of C’s in the following set
of numbers is 12.

444 455
445 545
454 554
544 555

» Solve special cases separately.

> If C # Aand C # B, answer is 0,
» if A= B = C answer is 1.

Beer Barrels

» Task: Given all numbers made of K digits with values A or B,
sum up all occurences of digit C.

If A=4 B =5 and C =4, the number of C’s in the following set
of numbers is 12.

444 455
445 545
454 554
544 555

» Solve special cases separately.
> If C # Aand C # B, answer is 0,
> if A= B = C answer is 1.
» Note that every number can be mirrored by exchanging A and
B

» Note that every number can be mirrored by exchanging A and
B

444 <-> 555
445 <-> 554
454 <-> 545
544 <-> 455

» Note that every number can be mirrored by exchanging A and
B

444 <-> 555
445 <-> 554
454 <-> 545
544 <-> 455

» So for each pair there are exactly K occurrences of the digit.

» Note that every number can be mirrored by exchanging A and
B

444 <-> 555
445 <-> 554
454 <-> 545
544 <-> 455

» So for each pair there are exactly K occurrences of the digit.
> Answer is K - 2K /2.

Complexity O(K)

Beer Vision

» A drunken image (points in 2D) is created from a sober image
by shifting the sober image and merging the original and
shifted sober image.

Beer Vision

» A drunken image (points in 2D) is created from a sober image
by shifting the sober image and merging the original and
shifted sober image.

» Task: Given a drunken image, count the number of different
vectors which can be used to create the drunken image from a
sober image.

Beer Vision

» A drunken image (points in 2D) is created from a sober image
by shifting the sober image and merging the original and

shifted sober image.

» Task: Given a drunken image, count the number of different
vectors which can be used to create the drunken image from a

sober image.

sober

drunken

» Each vertex must be in either the original sober image or in its
copy.

» Each vertex must be in either the original sober image or in its
copy.

> Pick vertex v; for any fixed vector if it is in the original image,
then it must have a copy present in the drunken image. If it is
an image, it must have its original in the drunken image.

» Each vertex must be in either the original sober image or in its
copy.

> Pick vertex v; for any fixed vector if it is in the original image,
then it must have a copy present in the drunken image. If it is
an image, it must have its original in the drunken image.

> Solution:
» Try for each vector starting at a fixed vertex ending in all other

vertices.

» Each vertex must be in either the original sober image or in its
copy.
> Pick vertex v; for any fixed vector if it is in the original image,
then it must have a copy present in the drunken image. If it is
an image, it must have its original in the drunken image.
> Solution:
» Try for each vector starting at a fixed vertex ending in all other
vertices.
» The vector v is good if for each vertex u there is either u + v
or u— v in the drunken image.
> complexity O(n? - hash)

Beer Mugs

P Let us have look on how such permutation shall look like:

Beer Mugs

P Let us have look on how such permutation shall look like:
» Obviously it must be a palindrom:

» This means that every that all - but (at most) one -
characters must be included even number of times.

Beer Mugs

v

Let us have look on how such permutation shall look like:
Obviously it must be a palindrom:

This means that every that all - but (at most) one -
characters must be included even number of times.

Lets find a bit-mask for each index: I-th bit is on, if I-th
character is odd number of times in string [0:I]

Beer Mugs

v

Let us have look on how such permutation shall look like:
Obviously it must be a palindrom:

This means that every that all - but (at most) one -
characters must be included even number of times.

Lets find a bit-mask for each index: I-th bit is on, if I-th
character is odd number of times in string [0:I]

Now observe, that if we XOR two such masks and the result
contains zero or one 1bit, it is a valid substring (between
those indices [exclude/include])

Beer Mugs

v

Let us have look on how such permutation shall look like:
Obviously it must be a palindrom:

This means that every that all - but (at most) one -
characters must be included even number of times.

Lets find a bit-mask for each index: I-th bit is on, if I-th
character is odd number of times in string [0:I]

Now observe, that if we XOR two such masks and the result
contains zero or one 1bit, it is a valid substring (between
those indices [exclude/include])

Now we can simply go from left to right, putting such masks
to a map (or better an array) while checking whether there
exists a previous occurence which is either same or with one
bit off.

Beer Mugs

v

Let us have look on how such permutation shall look like:
Obviously it must be a palindrom:

This means that every that all - but (at most) one -
characters must be included even number of times.

Lets find a bit-mask for each index: I-th bit is on, if I-th
character is odd number of times in string [0:I]

Now observe, that if we XOR two such masks and the result
contains zero or one 1bit, it is a valid substring (between
those indices [exclude/include])

Now we can simply go from left to right, putting such masks
to a map (or better an array) while checking whether there
exists a previous occurence which is either same or with one
bit off.

Complexity O(N - |af| + 21@8)

Screamers in the Storm

» Simple implementation task
» Just implement and simulate described process

> Pay close attention to when particular events occur (death of
starvation, grass grows after 3 turns after the beginning of the
game ...)

Screamers in the Storm

» Simple implementation task
» Just implement and simulate described process

> Pay close attention to when particular events occur (death of
starvation, grass grows after 3 turns after the beginning of the
game ...)

Beer Can Game

» Observation: Insert can / Remove can are standard operations
used in edit distance calculation.

» The tricky part is the last operation, expanding the token.

» Observation: We have to expand all tokens to beer cans
anyway so we can separate adding number of expansions to
the result and expansions themselves.

Beer Can Game

» Expanded token can be used as any letter so we'll expand it to
some wildcard symbol and postpone the decision of specific
symbols.

Beer Can Game

» Expanded token can be used as any letter so we'll expand it to
some wildcard symbol and postpone the decision of specific
symbols.

> Example:
» edit3tance becomes edit???tance
» Plus we need to add 1 to the result as we did one expansion.

> We apply the same approach to both input lines.

Beer Can Game

» Expanded token can be used as any letter so we'll expand it to
some wildcard symbol and postpone the decision of specific
symbols.

> Example:

» edit3tance becomes edit???tance
» Plus we need to add 1 to the result as we did one expansion.
> We apply the same approach to both input lines.

P> The rest is to adjust edit distance calculation to accept
wildcards. Allow match for a combination wildcard and a
letter and also for two wildcars at the leading positions of the
lines.

Beer Can Game

» First input line can be up to 10000 characters long and
include at most 100 digits. After applying expansion it can be
up to N = 10800 characters long.

» Second input line can be up to 1000 characters long and

include at most 100 digits. After applying expansion it can be
up to M = 1800 characters long.

Beer Can Game

» First input line can be up to 10000 characters long and
include at most 100 digits. After applying expansion it can be
up to N = 10800 characters long.

» Second input line can be up to 1000 characters long and
include at most 100 digits. After applying expansion it can be
up to M = 1800 characters long.

> We'll calculate edit distance using dynamic programming in
O(NM).

» Overall time complexity is O(NM).

Beer Marathon

>

>

v

v

Key observation: Imagine we have an already formed sequence
of booths with correct distances between each other

If we shift this whole solution by a single unit of distance to
the left, we save the distance equal to the number of booths
that were moved to this solution from the left, minus the
distance equal to the number of booths moved there from the
right

...and vice versa

It is thus profitable to repeatedly shift the solution to the side
from which the larger number of booths was obtained
Therefore, the optimal solution is reached when the number
of booths from either side is equal

= the function of the result w.r.t. the position of the
sequence is unimodal

We can find the optimal solution with e.g. ternary search

Time complexity (also including sorting): O(N log N)

Beer Marathon

» Another solution:

Sixpack

» The sum of all numbers across all the sixpacks must remain
constant.

» When moving towards the next sixpack we dispose of one
whole column and add another one.

» Observation: The sum of numbers in the exchanged columns
must be the same.

Sixpack

» One of the ways to solve this problem is to set 3 fixed sums
for the columns, as the sum of column is bound to repeat
during an exchange of columns.

» We can precompute number of ways to reach the sum of X in
the added column, which obviously depends on how many
numbers are pre-filled in this column.

» We will loop through each column for every combination of
fixed sums and calculate number of ways to fill out the
column.

» And through that we will also check for validity as otherwise
the number of ways to reach certain value will be equal to
zero.

Sixpack

» Maximal possible sum for first (modulo 3) column is 18. For
the second column the possible sum goes also up to 18. And
for the third one we will compute it from the first two.

» We are doing an iteration through all columns.

> Time complexity of this solution is O(N)

Beer Coasters

Beer Coasters

» Task: Compute area of a beer coaster (rectangle) which is
covered by a beer (circle).

Beer Coasters

» Task: Compute area of a beer coaster (rectangle) which is
covered by a beer (circle).

> Compute area of rectangle-circle intersection.

Beer Coasters

» Task: Compute area of a beer coaster (rectangle) which is
covered by a beer (circle).
> Compute area of rectangle-circle intersection.

» Approaches:
> Either try to differentiate every possible case,

Beer Coasters

» Task: Compute area of a beer coaster (rectangle) which is
covered by a beer (circle).
> Compute area of rectangle-circle intersection.

» Approaches:

> Either try to differentiate every possible case,
» or write generalized solution to the problem.

Beer Coasters

» Task: Compute area of a beer coaster (rectangle) which is
covered by a beer (circle).

> Compute area of rectangle-circle intersection.

» Approaches:

> Either try to differentiate every possible case,
» or write generalized solution to the problem.

» Alter the standard polygon area algorithm.

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Coasters

Beer Flood System

> We have a DAG with a single source and a single sink

» Therefore every vertex is reachable from the source and the
sink is reachable from every vertex

> The goal is to remove as many edges as possible, while still
preserving the above conditions

» How does the remaining graph look like?

Beer Flood System

> We have a DAG with a single source and a single sink

» Therefore every vertex is reachable from the source and the
sink is reachable from every vertex

> The goal is to remove as many edges as possible, while still
preserving the above conditions

» How does the remaining graph look like?

> There must be at least a single incoming and a single

outcoming edge for every vertex (except for the source and
the sink)

> We would like to do this with as little edges as possible

» In the best case, we want to fulfill the incoming edge
requirement of some vertex and the outcoming edge
requirement of another vertex with a single edge

Beer Flood System

» Therefore we want to find as many such pairs of vertices as
possible

> = we perform maximum bipartite matching

Beer Flood System

» Therefore we want to find as many such pairs of vertices as
possible

> = we perform maximum bipartite matching

o

Beer Flood System

» Therefore we want to find as many such pairs of vertices as
possible

> = we perform maximum bipartite matching

o

» There still may be vertices with either incoming or outcoming
edge requirement unsatisfied

> We fulfill each of these with an arbitrary edge
» Sufficient time complexity: O(NM)

Thank you for your attention!

