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Security Guards

I Fill the 5000 × 5000 grid with the distance to the nearest
guard.

I Use BFS with multiple starts.

I Query in constant time

Complexity O(N2 + Q)
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Security Guards - alternative solution

I Fill the 5000 × 5000 grid with 1 on guard positions and 0
otherwise.

I Create 2D prefix sum.

I For each query use binary search by answer.

Complexity O(N2 + Q logN)
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Lightning

I Dynamic Programming
I Parameters:

I position in bit string
I number of ones so far
I carry

I Expand each state by adding 1 or 0

Complexity O(N K )
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Split Game

I Each impartial game is equivalent to NIM.

I Sum of games has nimber equivalent to XOR of nimbers of
individual games.

I Note that adding two same piles do not change the outcome.

I We precompute nimbers up to piles of size 2000 (DP).

I XOR nimbers of games on the input.

I If XOR is zero second player wins, otherwise first player wins.

Complexity O(N2 logN)

If you try hard, you can achieve O(N2)
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Rulette

1. If you have at least 4 cards in your hand then add 1 to the value. Also add to the value the multiple of the
number of J’s in your hand and the score of the first card in your hand.

2. If you have at least 2 cards of the same suit in your hand then multiply the value by 2.

3. If you have at least one card of each suit in your hand then multiply the value by 2.

4. If the count of black (Clubs and Spades) and the count of red (Hearts and Diamonds) cards in your hand
differ then add the absolute difference of the counts to the value.

5. If the value is currently even then add all positive integer divisors of the value (including 1 and the value
itself) to the value.

6. If there are exactly 4 cards of rank 7 in your hand then subtract 112 from the value.

7. If the value is currently non-negative then add the score of the lowest score card in your hand to the value.

8. If the value is currently negative then multiply the value by −1.

9. If there are at least 3 cards of Diamond suit in your hand then add 1 to the value and swap ranks of all 6’s
to 9’s, all 9’s to 6’s, all 2’s to 5’s, and all 5’s to 2’s in your hand at once.

10. If there is a straight in your hand then add five times the number of A’s in your hand to the value.

11. If the value was modified by the rules more than 8 times so far then add the number of 1’s bits in the
binary representation of the value to the value.

12. If there is at least one card of rank 2 in your hand then apply once again the last rule which changed the
score (after that continue with rule ??).

13. If there is at least one card of rank 2 in your hand then add the product of all distinct superfactors of the
value to the value. A superfactor divides the value evenly and it is the highest power of a prime factor of
the value.

14. If the value is 674 you win!
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6. Add the score of the lowest score card in your hand to the value.

7. If there are at least 3 cards of Diamond suit in your hand then add 1 to the
value and swap ranks of all 6’s to 9’s, all 9’s to 6’s, all 2’s to 5’s, and all 5’s to
2’s in your hand at once.

8. If there is a straight ending in A, add five to the value.

9. If there is at least one card of rank 2 in your hand then apply once again the
last rule which changed the score (after that continue with rule ??).

10. If there is at least one card of rank 2 in your hand then multiply value by 2.

Simple implementation . . . with high probability of a mistake
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Escalators

I Split the problem into 20 instances by bits.

I In i-th iteration consider only nodes which have 1 on the i-th
bit.

I Find sizes of components of ones (DFS).

I Each component adds
(size

2

)
· 2i .

Complexity O(N logW )
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Moving Furniture

I Basic operation: complete square from 2 given points

0, 0
x, y

y, -x
y+x, y-x

-y, x
x-y, x+y

I Repeat
I Find lowest leftmost point
I Try to create square with each of the remaining points
I Choose the smallest square
I Erase points of the chosen square

Complexity O(N2 logN)
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Locker Room

I Create Suffix array over s + s.
I Binary search by answer

I Scratch out every segment with lesser rank.
I Scratching can be done with O(N) sweep.
I Total complexity O(N logN).

I Keep track of non-scratched segments
I Traverse SA and remove scratched segments.
I Segments in Set: O(logN)
I Total complexity O(N logN).

I Note that complexity depends on SA construction.
O(N log2 N) suffices (if implemented reasonably).
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Numbers Generator

I Keep track of current state with Finite automaton.

I We can use Aho-Corasick algorithm to achieve this.

I We create matrix A with probabilities of transitions.

I We can achieve this by giving each edge in Aho-Corasick 1
2

probability of traversal, and creating edges with probability 1
from all final states to one common final state.

I Now find the expected number of steps before ending in
absorbing state.

I After solving (E − A)x = 1 the answer can be found in x0.

I To solve this equation we can use Gaussian Elimination.

I Complexity O((W B)3)
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Thank you for your attention!


