
CTU Open 2015

Solutions Discussion

Chasing the Cheetahs

Chasing the Cheetahs

● Goal: Determine the shortest distance between the first
and the last cheetah during the race.

● Idea: Build a list of cheetahs running first (at any time)
during the race (“upper envelope”) and keep the times in
which they outrun each other, build a similar list for the last
cheetahs (“lower envelope”). Then, find the shortest
distance between the envelopes - the times at which the
distance must be considered is 0 and any time a cheetah is
outrun by another. This allows for O(N.log(N)) solution, see
the example on the next slides.

Chasing the Cheetahs [cont’d]

time

distance

“upper envelope”

“lower envelope”

solution

Envelopes can be constructed in O(N.log(N)) in mergesort-like fashion.

Chasing the Cheetahs [cont’d]

time

distance

“upper envelope”

Envelopes can be constructed in O(N.log(N)) in mergesort-like fashion.

1st half of cheetahs

Chasing the Cheetahs [cont’d]

time

distance

“upper envelope”

Envelopes can be constructed in O(N.log(N)) in mergesort-like fashion.

2nd half of cheetahs

Chasing the Cheetahs [cont’d]

time

distance

“upper envelope”

Envelopes can be constructed in O(N.log(N)) in mergesort-like fashion.

“merge” the envelopes from the 2 halves

Chasing the Cheetahs [alternative
 solution]

● Idea: The distances between the envelopes as a function
of time, d(t), is convex linear-fractional function. This
function is unimodal and we can use ternary search
method (binary search works with additional information
about 1st and last cheetah at time t).

timet0 t1t2 t3t4 t5

[t0, t1] → [t0, t3] →[t4, t3] → [t4, t5] → ...

d(t2) < d(t3) d(t2) < d(t4) d(t2) < d(t5)

“s
iz

e
of

 th
e

pa
ck

”

Chasing the Cheetahs [alternative
 solution]

●
be = “time the last cheetah runs out”
en = “upper bound on the duration of the race”

for (step = 0; step < ENOUGH; ++step):
t1 = (2 * be + en) / 3
t2 = (be + 2*en) / 3
v1 = d(t1)
v2 = d(t2)
if v1 <= v2:

en = t2
else

be = t1

Falcon Dive

Falcon Dive

● Goal: Extrapolate the image of the diving falcon from two
pictures taken in two subsequent moments in time.

● Ideal: Locate the top-left pixel of the falcon’s silhouette in
both images and compute the translation vector from it.
The background can be reconstructed easily (silhouettes
do not overlap) by taking pixels from any image if it’s not
part of the falcon or taking it from the other image if it is.
Then, given the position of pixels of the falcon in the 1st
image it is just a matter of adding twice the translation
vector to it and putting the pixel on it in the output image.

The Fox and the Owl

The Fox and the Crow

● Goal: For given integer N (huge!) find the largest integer
smaller than N with sum of its digits larger by 1 than the
sum of digits of N.

● Idea: Implementational problem. Needed careful case
analysis and implementation.
○ -99999 → -199999
○ -123999 → -124999
○ 104899 → 99950: Sum of the 4 green digits + 2 (LHS) is

below 4 * 9 (do not forget to skip 0s), decrease red digit
(discard it if it becomes 0) and fill the rest of the digits
to the right of it by { min(LHS, 9); LHS -= 9; } while LHS >
0;

The Fox and the Crow

○ 4899 → -4999
○ 9999 -> -19999: using our rule we hit the left end, in

that case we need to distribute the sum of digits + 1
(modulo 9) to the left of the negative sign, and possibly,
fill the rest of the number by 9s.

○ 9998 → -9999

Feeding the Herrings

Feeding the Herrings

● Goal: Determine how many combinations (a, b, c) exist,
such that a, b, c are at least L and a + b + c equals N.
Moreover, there must not be 3 in the digits of a, b, c.

● Idea: The size of numbers (obviously) suggest an approach
based on representation of the number a, b, c as arrays of
digits + dynamic programming:
○ Let’s consider the case when L = 0:

■ comb[i][c] - “# of combinations correct (a, b, c) which
add up to N[i..len(N)] with carry c.

■ Fill in the table comb[i][c] (next slide).
■ Print the answer comb[0][0].

● Code snippet for filling the table comb[i][c]:

int solve(i, c):
if (comb[i][c] != -1) return comb[i][c]
if (i == len(N)):

ans = (c == 0) ? 1 : 0
else:

ans = 0
for a in [0, 1, 2, 4, …, 9]: // Try all allowed digits for (i + 1)-th place of a.

for b in [0, 1, 2, 4, …, 9]:
for c in [0, 1, 2, 4, …, 9]:

c2 = 10 * c + N[i] - a - b - c
if (0 <= c2 <= 2):

ans = (ans + solve(i + 1, c2)) % MOD
comb[i][c] = ans
return comb[i][c]

Feeding the Seals [cont’d]

NOTE: The for-loops in the solution when L
> 0 must use the lower limit induced by L
and the table must reflect that!

NOTE: Check for yourself the allowed
values for the carry c.

Jumping Yoshi

Jumping Yoshi

● Goal: Find out the furthest pebble Yoshi can jump to while
satisfying the given rule.

● Idea: Beat the naive O(N2) solution by the following
observation:

rule: pebble[i] + pebble[j] == distance[j] - distance[i]
for every oriented edge (i, j), which implies:

distance[i] + pebble[i] == distance[j] - pebble[j]
so by building 2 lists of pebbles for each n in [0… N-1]:

out[n] = [i | distance[i] + pebble[i] == n]
in[n] = [j | distance[j] - pebble[j] == n]

Jumping Yoshi [cont’d]

● Now, start BFS from 0 (1st pebble) on implicitly defined
edges by the two lists in and out (ignore orientation!):

Q = {0}
while not Q.empty():

i = Q.pop()
if distance[i] + pebble[i] < N:

for j in in[distance[i] + pebble[i]]: // check the edges (i, j)
if not visited[j]: Q.push(j), visited[j] = True

if distance[i] - pebble[i] >= 0:
for j in out[distance[i] - pebble[i]]: // check the edges (j, i)

if not visited[j]: Q.push(j), visited[j] = True

answer = max{i | visited[i] == True}

Lunch Menu

Lunch Menu

● Goal: Count how many quadruples (s, m, d, b) - “menus” -
can be made with a price under the given budget.

● Idea: Beat the naive O(N4) solution by sorting and using
binary search:

p(s[S], m[M])

prices of menus from S and M

p(d[1], b[1]) p(d[D], b[B])

sorted prices of menus form D and B

p(s[1], m[1])

p(s[i], m[i])
number of menus within budget containing s[i], m[i]

binsearch for value L - p((s[i], m[i])) + 1

The Owl and the Fox

The Crow and the Fox

● Goal: For given integer N (small!) find the largest integer
smaller than N with the sum of its digits smaller by 1 than
the sum of the digits of N.

● Idea: The size of N permitted the use of brute-force:

while(--N > 0 and digitsum(N) + 1 != dsOfN):
continue

int digitsum(N):
sum = 0
while (N > 0): sum += N % 10, N /= 10
return sum

Plankton Food

Plankton Food

● Goal: Determine whether there is a negative cycle
reachable from the start vertex (unnecessary food) to the
destination vertex (necessary food).

● Idea: Run Bellman-Ford algorithm for T iterations and mark
the vertices whose distance from the start changed in the
last iteration - each of these lies on a negative cycle. Then,
(with edges reversed) run BFS/DFS from the target and
see whether you can get to a marked vertex -- the answer
is TRUE, or not -- FALSE.

Plankton Food [cont’d]

● BEWARE: You might tried running the Bellman-Ford
algorithm for (T - 1) iterations, keeping the distances,
running it one more time for another T iterations and finally
checking whether the distance in the target has changed,
but this does not work:

? ?

?

-1-1

-1

Fn Fu

00

-1000000

Hacking the Screen

Hacking the Screen

● Goal: Evaluate the given simple arithmetic expression.
● Idea: Pure implementational problem:

○ Implement subroutine evaluating SIMPLE expressions
 eval(char *exp, int s, int e)
which evaluates an expression starting/ending in the
string exp at s/e.

○ Use the number of ‘-’ (‘=’) when you hit ‘\’ (first ‘=’) to find
s/e for a square root (fraction) sub-expression.

○ Build a simple expression by substituting results from
sub-expressions and call eval on the whole thing.

Visitors' Train

Visitors' Train

● Goal: Find the total length of the segments on the track
from which the main aviary is visible and is not obscured,
not even partially, by any other aviary.

● Idea: Utilize algebraic primitives, such as cross product (to
determine angles) and Cramer’s rule (determine points of
intersection), to compute the “shade” casted on the track.
Think hard over the possible track/aviaries layouts and
make sure your solution works for a more “troublesome”
compositions.

Visitors' Train [cont’d]

Main Aviary

Track

D

Visitors' Train [cont’d]

Main Aviary

Track

A

B C

w

x

z

y

ᶓ(Ray1, Ray2)

Ray
2

Ray1

16 lines Aw, Ax, Ay, …, Dx, Dy, Dz.

Select Ray1 and Ray2 which
maximize α(Ray1, Ray2)

D

Visitors' Train [cont’d]

Main Aviary

A

B C

w

x

z

y

Ray
2

Ray1

Detect and process cases
using precise integer
arithmetics

Trivial Cases

Visitors' Train [cont’d]

Main Aviary

Canonical Troublesome Case

Ray2

Ray
1

P
Q

Aviaries’ edges and the whole
track lies on a line.

Floating-point arithmetic is not
guaranteed to yield the correct values
in this case. Careful use of ε helps!

Is PQ parallel with Ray2?

Is PQ ∩ Ray2 empty?

If not, where is it?

?

Questions?

Great Thanks Goes to Problem Setters

Marko Genyk-Berezovskyj

Josef Cibulka

Michal “Mimino” Danilák

Tomáš Tunys

Martin Kačer

Pavel Strnad

